You can use this app to compute matematical problems on complex numbers easily.
If you are curious, you can also graph a complex function. For the graphing of complex number I used the solution complex domain coloring, Domain coloring makes every input complex number a point on a 2D graph, and every output complex number a color. It then colors each input point with its cooresponding output color. It's magnitude means point's distance from the orgin becomes it's brightness and the argument of the resulting complex number is hue.
First of all input the mathematical expression you want to solve containing a complex number in the Mathematical Expression Field. and then press Enter.
You will Immediately see the answer of the expression.
^
or **
to denote power of a number*
for multiply, +
for plus, -
for minus and /
for divideExample: tan(3 + 4i) - 2^3
You can input any mathematical function in the input field containing a complex number variable z
You can also set the range of graph's x-axis.
Be sure to check the Graph Function checkbox if you want to graph a complex function. By default it's unchecked.
It will graph your function as follows:
centre of the graph is complex number 0 + 0i
. By going right from center, the real part increases and by going left it decreases and similarly by going to top the imaginary part increases and by going to bottom it decreases.
f(z) = 1/z
f(z) = log(z)
f(z) = sin(z)
f(z) = tan(z)
This app also provides you with a random but cool trick to solve mathematical computations on complex numbers.
My project uses cmath python library for complex number calculations. I used Pillow library to make graph of complex functions on an image.
This project is inspired from a project by Dan Jutan.
Complex Function Grapher by Dan Jutan: https://jutanium.github.io/ComplexNumberGrapher/
import base64
import io
import math
from PIL import Image, ImageDraw, ImageColor
import cmath
import random
# This function is used to create an image from the plot created using matplotlib.plt
def plt_show(plt, width=500, dpi=100):
# Converts matplotlib plt to data string
# dpi (dots per inch) is the resolution of the image
# width is width of image in pixels
bytes = io.BytesIO()
plt.savefig(bytes, format='png', dpi=dpi) # Save as png image
plt.close()
bytes.seek(0)
base64_string = "data:image/png;base64," + \
base64.b64encode(bytes.getvalue()).decode("utf-8")
return " + base64_string + "' width='" + str(width) + "'>"
# Function to embed a image
def Image_Embed(data):
return " + data + "' width='600' style='margin: auto;'>"
# Calculate magnitude and theta of a complex number
def calculate_mag_deg(z):
a = z.real
b = z.imag
r = math.hypot(a, b)
theta = math.degrees(math.atan2(b, a))
if theta < 0:
theta += 360
return {
"magnitude": round(r, 2),
"degrees": round(theta, 2)
}
# Make a function string evaluatable by python.
def make_function_evaluatable(func):
return func.replace("log", "cmath.log").replace("logn", "cmath.logn").replace("pi", "cmath.pi").replace("sin", "cmath.sin").replace("cos", "cmath.cos").replace("tan", "cmath.tan").replace("^", "**").replace("i", "j").replace("sjn", "sin").replace("pj", "pi")
# Solve function: solve string function on input of complex number z and return answer
def solve_function(function, z):
# make function evaluatable
function = make_function_evaluatable(function)
# replace z with the complex number z
function = function.replace("z", str(z))
try:
# securely evaluate the expression
return eval(function, {"__builtins__": {}}, {"cmath": cmath})
except:
return 0
# solve mathematical expressions containing complex numbers
def solve_expression(exp):
exp = make_function_evaluatable(exp)
try:
# securely evaluate the expression
return eval(exp, {"__builtins__": {}}, {"cmath": cmath})
except:
# If any errors return False
return False
# graph complex numbers using complex domain coloring on a png image
def graph_complex_function(f, a, b):
points = []
# compute magnitude and degrees for every imaginary number on graph
for i in range(a, b+1):
col = []
for j in range(a, b+1):
z = complex(i, j)
solved = solve_function(f, z)
calc = calculate_mag_deg(solved)
col.append({
"magnitude": calc["magnitude"],
"degrees": calc["degrees"]
})
points.append(col)
w = abs(a) + abs(b) + 1;
print(w)
img = Image.new("RGB", (w, w))
draw = ImageDraw.Draw(img)
# draw every pixel in the image
for i in range(w):
for j in range(w):
# calculate the brightness for the point
l = abs(math.atan(abs(points[i][j]["magnitude"])) / (math.pi / 2) * 100)
# color hue
d = abs(points[i][j]["degrees"])
# make color in hsl format
color = f"hsl({d}, 100%, {l}%)"
draw.point((i, j), fill=ImageColor.getrgb(color))
# save image as png and show
img = img.transpose(method=1)
buffer = io.BytesIO()
print(img.format)
img.save(buffer, format="PNG")
encoded_data = "data:image/png;base64," + base64.b64encode(buffer.getvalue()).decode()
image = Image_Embed(encoded_data)
return image
# Generates a random trick for solving complex numbers
def generate_random_trick():
# tricks to solve complex numbers
tricks = [
{
"heading": "Powers of i",
"trick": "i2 = -1
i3 = -i
i4 1"
},
{
"heading": "Multiplying Conjugates",
"trick": "(a + bi)(a - bi) = a2 + b2"
},
{
"heading": "Multiplication",
"trick": "(a + bi)(c + di) = (ac - bd) + (ad + bc)i"
},
{
"heading": "Addition",
"trick": "(a + bi) + (c + di) = (a + c) + (b + d)i"
},
{
"heading": "Subtraction",
"trick": "(a + bi) - (c + di) = (a - c) + (b - d)i"
},
{
"heading": "Division",
"trick": "(a + bi)/(c + di) = (ac + bd/c2 + d2) + (bc - ad/c2 + d2)i"
}
]
return random.choice(tricks)
def main(inputs):
f = inputs['func']
a = inputs['range'][0]
b = inputs['range'][1]
graph_function = inputs['graph_function']
expression = inputs['math_exp']
err_solve = False
err_graph = False
image = False
if graph_function:
# check if function is valid
if "z" not in f:
err_graph = True
image = False
else:
image = graph_complex_function(f, a, b)
else:
image = False
solved = solve_expression(expression)
# check for errors in solving expression
if solved == False:
err_solve = True
details = calculate_mag_deg(solved)
return {
"equation": f,
"a": a,
"b": b,
"Image": image,
"math_exp": expression,
"solved": str(solved).replace("j", "i"),
"modulus": details["magnitude"],
"argument": details["degrees"],
"trick": generate_random_trick(),
"err_solve": err_solve,
"err_graph": err_graph,
"graph_function": graph_function
}
Copyright © MecSimCalc 2025
Terms | Privacy