The numerical integration follows the exaplanation on the online notes here:
https://engcourses-uofa.ca/books/numericalanalysis/numerical-integration/introduction/
The code used:
import sympy as sp from scipy.integrate import quad import matplotlib.pyplot as plt import numpy as np import base64 import io import math #This function is used to create an image from the plot created using matplotlib.plt def plt_show(plt, width=500, dpi=100): # Converts matplotlib plt to data string # dpi (dots per inch) is the resolution of the image # width is width of image in pixels bytes = io.BytesIO() plt.savefig(bytes, format='png', dpi=dpi) # Save as png image plt.close() bytes.seek(0) base64_string = "data:image/png;base64," + \ base64.b64encode(bytes.getvalue()).decode("utf-8") return "" #The following functions calculate the integrals and the coordinates for plotting the visual curves representing the integration def I1(f, a, b, n): h = (b - a)/n x_coor=[] y_coor=[] i=0; while i< int(n): x_coor.extend([(a+i*h),(a+(i+1)*h)]) y_coor.extend([f(a+i*h),f(a+(i)*h)]) i=i+1 return [sum([f(a + i*h)*h for i in range(int(n))]),x_coor,y_coor] def I2(f, a, b, n): h = (b - a)/n x_coor=[] y_coor=[] i=0; while i< int(n): x_coor.extend([(a+i*h),(a+(i+1)*h)]) y_coor.extend([f(a+(i+0.5)*h),f(a+(i+0.5)*h)]) i=i+1 return [sum([f(a + (i + 1/2)*h)*h for i in range(int(n))]),x_coor,y_coor] def I3(f, a, b, n): h = (b - a)/n x_coor=[] y_coor=[] i=0; while i< int(n): x_coor.extend([(a+i*h),(a+(i+1)*h)]) y_coor.extend([f(a+(i+1)*h),f(a+(i+1)*h)]) i=i+1 return [sum([f(a + (i + 1)*h)*h for i in range(int(n))]),x_coor,y_coor] def IT(f, a, b, n): h = (b - a)/n x_coor=[] y_coor=[] i=0; while i< int(n): x_coor.extend([(a+i*h),(a+(i+1)*h)]) y_coor.extend([f(a+(i)*h),f(a+(i+1)*h)]) i=i+1 return [sum([(f(a + i*h) + f(a + (i + 1)*h))*h/2 for i in range(int(n))]),x_coor,y_coor] def IS1(f, a, b, n): h = (b - a)/2/n x_coor=[] y_coor=[] i=0; while i< int(n): x1=np.linspace((a+2*i*h),(a+(i+1)*2*h)) xi1=a+i*2*h xi=a+(i+1)*2*h xmi=a+(i+0.5)*2*h y1=f(xi1)*(x1-xmi)*(x1-xi)/2/h**2-f(xmi)*(x1-xi1)*(x1-xi)/h**2+f(xi)*(x1-xi1)*(x1-xmi)/2/h**2 x_coor.extend(x1) y_coor.extend(y1) i=i+1 return [h/3*sum([(f(a + (2*i)*h) + 4*f(a + (2*i + 1)*h) + f(a + (2*i + 2)*h)) for i in range(int(n))]),x_coor,y_coor] def IS2(f, a, b, n): h = (b - a)/3/n x_coor=[] y_coor=[] i=0; while i< int(n): x1=np.linspace((a+i*3*h),(a+(i+1)*3*h)) xi1=a+i*3*h xli=xi1+h xri=xli+h xi=xri+h #y1=x1**2+2.0 #print(y1) y1=f(xi1)*(x1-xli)*(x1-xri)*(x1-xi)/-6/h**3+f(xli)*(x1-xi1)*(x1-xri)*(x1-xi)/2/h**3-f(xri)*(x1-xi1)*(x1-xli)*(x1-xi)/2/h**3+f(xi)*(x1-xi1)*(x1-xli)*(x1-xri)/6/h**3 x_coor.extend(x1) y_coor.extend(y1) i=i+1 return [3*h/8*sum([(f(a + (3*i)*h) + 3*f(a + (3*i + 1)*h) + 3*f(a + (3*i + 2)*h) + f(a + (3*i + 3)*h)) for i in range(int(n))]),x_coor,y_coor] #The following function is used to select the appropriate case def switch(Method,f,a,b,n): tester={ "Rectangle Method 1 (Left Corner)":I1, "Rectangle Method 2 (Midpoint)":I2, "Rectangle Method 3 (Right Corner)":I3, "Trapezoid Rule":IT, "Simpson's One Third Rule":IS1, "Simpson's Three Eightth Rule":IS2, } return tester.get(Method,"none found")(f,a,b,n) #The following function is used for rounding to significant digits. def rounds(a_number,significant_digits): small_value=1.0e-9 try: rounded_number = round(a_number, significant_digits - int(math.floor(math.log10(max(abs(a_number),abs(small_value))))) - 1) except: rounded_number = "N/A" return rounded_number #This is the main function def main(inputs): f=inputs['func'] a=inputs['a'] b=inputs['b'] Method=inputs['method'] n=inputs['n'] Err=False img=False Err2=False try: g=sp.sympify(f) except: Err=True #Here I use sympy plot which is has matplotlib as its backend. if not Err: x=sp.symbols('x') try: sp.plot(g,(x,a,b)) img=plt_show(plt,500) f=sp.lambdify(x,g) except: Err2=True if not Err and not Err2: res,err=quad(f,a,b) #Exact="The numerical result is {:f} (+-{:g})".format(res, err)) #print(switch(Method,f,a,b,n)) Integration,x_coor,y_coor=switch(Method,f,a,b,n) percent=rounds((Integration-res)/res*100,3) plt.fill_between(x_coor,0,y_coor,color='black',facecolor='orange') x1=np.linspace(a,b) plt.plot(x1,f(x1)) curve=plt_show(plt,500) else: print("error") return {"plot":img, "equation":g,"Error":Err,"ErrorPlot":Err2,"a":a,"b":b,"n":n,"Method":Method,"Integration":rounds(Integration,5),"Res":res,"Err":err,"Percent":percent,"Curve":curve}
{% if outputs.Error %} Please Enter a valid expression in x {% elif outputs.ErrorPlot %} Function could not be plotted. Please enter a valid expression in variable x {% else %} The following figure provides the plot for the function f(x)={{outputs.equation}} between {{outputs.a}} and {{outputs.b}} {{outputs.plot|safe}} The python scipy package provides an accurate estimate of the ingral which is {{outputs.Res}}+/-{{outputs.Err}} Using {{outputs.Method}}, numerical integration with {{outputs.n}} intervals yields {{outputs.Integration}}, which is {{outputs.Percent}}% different from the scipy result. The following curve provides the plot of the function and the area calculated according to {{outputs.Method}}: {{outputs.Curve|safe}} {% endif %}
The output page:
{% if outputs.Error %} Please Enter a valid expression in x {% elif outputs.ErrorPlot %} Function could not be plotted. Please enter a valid expression in variable x {% else %} The following figure provides the plot for the function f(x)={{outputs.equation}} between {{outputs.a}} and {{outputs.b}} {{outputs.plot|safe}} The python scipy package provides an accurate estimate of the ingral which is {{outputs.Res}}+/-{{outputs.Err}} Using {{outputs.Method}}, numerical integration with {{outputs.n}} intervals yields {{outputs.Integration}}, which is {{outputs.Percent}}% different from the scipy result. The following curve provides the plot of the function and the area calculated according to {{outputs.Method}}: {{outputs.Curve|safe}} {% endif %}
Copyright © MecSimCalc 2025
Terms | Privacy